# Mathematica – Maxima

por | 8 diciembre, 2007

## Mathematica – Maxima

 Maxima `Mathematica` `plot2d( sin(x),[x,-5,5]);` `Plot[Sin[x],{x,-5,5}]` `plot3d( sin(x*y),[x,-3,3],[y,-3,3] );` `Plot3D[Sin[x y],{x,-3,3},{y,-3,3}]` `diff(cos(x)^5,x)` `D[Cos[x]^5,x]` `integrate(tan(x),x);` `Integrate[Tan[x],x]` `integrate(%e^(-x^2),x,minf,inf);` `Integrate[Exp[-x^2],{x,-Infinity,Infinity}]` `romberg(sin(cos(x)), x, 1, 3);` `NIntegrate[Sin[Cos[x]],{x,1,3}]` `limit((1+1/n)^n,n,inf);` `Limit[(1+1/n)^n,{n ->Infinity}]` `float(%e);` `N[E,100]` `factor(4 + 5*x + 5*x^2 + x^3);` `Factor[4 + 5*x + 5*x^2 + x^3]` `trigsimp(cos(x)^2+2*sin(x)^2);` `TrigReduce[Cos[x]^2+2 Sin[x]^2]` `tex(sin(x));` `TeXForm[Sin[x]]` `factor(132413241324123412341234);` `FactorInteger[132413241324123412341234]` `solve(x^3-3*x+1,x);` `Solve[x^3- 3*x+1==0,x]` `solve([x^2+2*x+y+3,x*y-3],[x,y]);` `Solve[{x^2+2*x*y+3==0, x*y-3==0},{x,y}]` `sum(k,k,1,n),simpsum;` `Sum[k,{k,1,n}]` `niceindices(powerseries(sin(x), x, 0));` `Series[Sin[x],{x,0,10}]`